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Iterative methods of determining the characteristic exponents (both 
isolated values and the full set of exponents) for a system of linear 
differential equations with periodic coefficients whose matrix is 
nearly constant are considered. The algorithm for reduction to a 
linear system with a constant matrix is based on the Newton-Kantorovich 
method of solving non-linear matrix equations. The iterative algorithm 
is generalized to the case with close characteristic exponents. 

The method is used for a numerical analysis of the dynamics of a 
magnetically suspended vehicle which moves with a constant velocity 
along a guideway represented by elastic dynamically uncoupled 
homogeneous beams /l, 2/. A covariance analysis is carried out of the 
random process of the excitation of vibrations in the system, allowing 
for the unevenness of the guideway. The characteristic exponents and 
multipliers for the system are calculated. 

1. statement of the problem. Consider a dynamic system with parametric excitation 
described by the linear equation 

2' = (-4, + -4, (Q)s + f (4 (1.1) 

with a constant (m X m) matrix A,, a Zn-periodic matrix of parametric excitations A,, the 
state vector x and the perturbation vector f (4. The norm of the matrix A, is small; 
initially we assume that A, has a simple structure. We introduce the matrix Ii, of the 
right eigenvectors of the matrixA,and make the change of variables Y = R,x. In the new 
variables, Eq.(l.l) takes the form 

Y' = (A, + B (t))Y + Y(t), A, = diag {t) (1.2) 

where h,j are the eigenvalues of the matrix A,,. Without loss of generality, we will assume 
that the Fourier series of B(t) 

B (t) = 3 B&k 

does not contain B,. 
For a sufficiently small matrix B(t), each isolated eigenvalue A,, generates a 

finite number of characteristic exponents of the equation with periodic coefficients (1.2) 
J., + ik (4 z h,,; k = 0, _cl, f2, . . .), 
corresponding solution of Eq.(1.2) 

and also the multiplier pr =exp(2n&) with the 
Y/ (t), yi(t + 22%) = ply1 (t). The solution Yl (1) may be 

expressed in terms of the characteristic exponents and the constant column vectors which are 
analogoues of the eigenvectors of the system with constant coefficients. 

Yj 0) = %k exp ((Al + iJ+) 

A complete analysis of a system with periodic coefficients requires a computation of the 
characteristic exponents and the corresponding vectors rjr. 

2. Iterative computation of an isolated characteristic exponent. Consider the character- 
istic exponent il generated by the isolated eigenvalue h, and the corresponding collection 
of vectors rk. For B(t)=0 we have h = h,, rk = 0, k = _tl, &2, . . .; r0 = e, = (1, 0, . . ., O)T. 
Without loss of generality, we assume that r0 = (1, ArT)T. 
&r&irk into (1.2), 

Substituting the expression Y(t) = 
we obtain a system of matrix equations for k and rr: 

((h-t ik)E-&Jr, = FBIrE-l, k = O,& 1,, 2,... (2.1) 
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Let 

B, = (&, &&r = (b,,,B,r), Ah = h - h,, A, = diag {X0, A&, 

Here & and bSl, are respectively the first row and the first column of the matrix B,. 
Consider the equation for k = 0 in system (2.1). In our notation, it separates into two 
equations: 

Ak = Zb,,*rct, Ar = U, (-AhAr -j- 2&r_& U. = (h,E - A,,)-1 

(E is the identity matrix). Fox the remaining equations in 12.1), we must stipulate that the 
characteristic exponents generated by h, are isolated. If the matrix B(t) is small, a 
sufficient condition for this is h, -&f ik, Ip==O +l i-2 . . . . Then the matrices t-*-t u, = 
((h, + ik)E - A&-l exist and we have 

rk = Uti (--A&r, -I- 8,~ t_ &AT + ZBirk_I) 

Now let us consider the iteration process 

and investigate its convergence. Put 

Using this notation, we obtain from (2.2) 

Introducing compatible norms and using the notation 

4 = 2 Ij B, (I, b, = S )/ b,, 11, b, = max I/ b2t Ii, A = mini h, + ik - h, [ 
c(“) = max {ilr,("~l/, Ij A r(“) \I}, 6c(“) = max I/ 8r&") 11, k = 0, &I, &2, . . . 

we finally obtain the inequality 

&Pt < &P-r) (B + b, (c+') + #'-")))/A, ~($1 < 6, 

Hence follows the majorising scalar equation /3/ 

p = (LB -t- b,.p -t &3/A 

and a sufficient condition of convergence of the process (2.2) 

A>BB+Zl/b,b, 

The first non-trivial correction to the characteristic exponent is 

Ak(2) = Z;bJU_$_, 

(2.3) 

3. Iterative soWion of the reducibiZitg ppobtem. The solution of the problem /4, 5/ 
of the reducibility of Eq.cl.2) is equivalent to determining the constant matrix C which is 
kinematically similar to hS + B(t). First consider the case when the matrix C is diagonal- 
izable. We need to find a periodic transformation matrix ft(t) that satisfies the equation 

(A, + B (QfR ($1 - R' (t) = R @)A, A = diag (4) (3.1) 

The solution of Eq.(3.1) simultaneously produces the characteristic exponents of Eq.cl.2). 
As before, the matrix B(t) is assumed to be small, and therefore R (t) is close to the 

identity matrix: R(t) = E f X(t). 
Eq.(3.1) can be solved by a Newtonian iteration algorithm. To this end, consider the 

relationship (AN, + BB-',)(E + X(k)) _ XC"Y = (E + XC"))(Ac~) f B(r)) (3.21 
k = 1, 2, . . ., A@$ = A,, B(O) = 3 (1) 
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We assume that 

8”’ = 231 e ,, ch, m XCkf = XXj')e"',. A") ri: diag (?$'} -p co& 

The matrix B@) in (3.2) is chosen from the condition of a quadratic rate of convergence 
of the iterations. As a result, we obtain equations for X@), B@) and A@) : 

_@@ + X(*fA+l) _,@-%)ti-cxt = #e-l, _ A.ti’x’ (3.3) 
$0 = (E + x’kt)-I (~(k-l)X(k) _ X(k)AA(k)),, ~‘0 ~ A#-1) _+ AA’k’ 

The matrix hhC0 is chosen from the condition& for a periodic solution for the first 
equation of system (3.3) to exist. A necessary condition fox this is that the Fourier 
expansions of the diagonal elements of the matrix B@-1) -AA@) do not contain zeroth terms, 
and if all the diagonal elements of the matrix A@-@ satisfy the inequalities 

&W-1) -&@-~'*Z, l-O,fl,&Z ,..., nfj 

then this condition is also sufficient. In this case, AA(k) = diag (b&')} where bOfj (R-X) are 

diagonal elements of the matrix &(r-l). 

The elements & of the matrix Xck) satisfy the equations 

whose solution under the above conditions have the form 

If the iterations (3.3) converge, they converges almost everywhere at a quadratic rate. 
BtQ and X(k) tend to zero, the diagonal elements of A@) tend to the characteristic 
exponents, and the product 

It, (E -+- P))(E t_ X@))(E + X(@). 1 - 

tends to the matrix R(@. As in Sect.2, convergence of the iterations (3.3) imposes a lower 
Unit of the form (2.3) on the ~ini~~~ distance between the characteristic exponents. The 
sufficient condition for the iterations to converge has the form 

l&n - %I --ilt>4.56B, 1=0,&L&2,..., n&j (3.41 

Here B is the norm of the matrix J3 (4 introduced in Sect-Z. 
Uote that (3.3) requires inverting the matrix E I- XC"), which is time-dependent and is 

defined by a Fourier series (in practice, the series contains a finite nuaber of terms). The 
inverse should 

that converges 
product 

that converges 

be computed either in the for% of a series 

Q + XC'())-I = B - X(k) +. X('Oa - X(')a + . . . 

at the rate of a geometrical progression for IXcX)g<t or in the form of a 

(E f X(k))-l = (E - X@)) Q + XCkn) (E f _x’Q”j , . * 

at EL quadratic rate under the same conditions. 

4, !&e extstenoe of dose an&ipZiers. !I% cuse when the t~~o~t~ mtrix becomes 
singutar duping the ZteMztion pmcess, Let us modify algorithm (3.3) so as to allow for the 
existence of close generating eigenvalues. In this case, the matrix E + Xtk) may become 
singular during the iteration process. The problem of diagonalieation should be replaced 
with tbe problem of reduction to a block-diagonal constant matrix in canonical form with 
either quasi-Jordan ox triangular blocks along the diagonal. The generating matrix A, is 
also reduced to canonical form. 

The modified algorithm has the form 
X(k)' +_ xUGi\(k-1) _A@-1)x(") =;#k-I)_ A$"' 

(W 

@' = (E + x(kt)-1(B(k-1)X'k'_Xlfk)AA!k)) 

@' =;A@-11 ,_ @Q, &k' = @"-'@O&k" 

A'"' ci I$")-' (Ajk)R'k'-RCk)j; k = I, 2,. . ., A”’ = A,, B’*‘= &?(q 
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The matrix AI&(~) is chosen not only from the conditions for a bounded solution of 
the first equation to exist, but also so as to eliminate small denominators in the solution. 
As we will show, it can be chosen as a block-diagonal constant matrix. In the next iteration 
step A(k-1) f AA,(k) is reduced to the required canonical form. 

Let us demonstrate the application of algorithm (4.1) by considering an example. Assume 
that the convergence condition (3.4) is violated for three generating eigenvalues &Q,&,, 
and &0* i.e., integers P and Q exist such that 

I &O - %O + ip I < 4.56 B, I A,, - &, + iq 1 < 4.568, 
I ho - ho + i (P + q) I < 4.56 B 

and in all other cases (3.4) is satisfied. 
To avoid the appearance of small denominators, we should include in the matrix AA,(k) 

a block of the form 

We then determine the matrix S(k) which transforms A,(') to a kinematically similar 
constant block-diagonal matrix A(k) of the above form. The transformation is carried out 
in two stages, i.e., R(k) is represented as the product of two matrices: Rck)= R,ck)R,tk). In 
the first stage, using the matrix 

R,(k) = diag (1, Ffpt, F*(P+'J)~, i, . . ., 1) (4.2) 

we apply a similarity transformation transforming Al(k) to a constant matrix A2l(k) with 
the diganonal block 

@-U + bit;:;') bp$ ,,(k-1) 
PW13 

b$;;) k(k-1) + ip + bit;” b(k-1) 
a 

b(k-1) 
-P-a 

b(k-1) 
-232 

aik-1) + f (p'"+ q)+ b$$) 

and Rack) transforms A,(k) to the form A(k) . , i.e., the problem has been actually reduced 
to examining a constant 3x3 matrix. 

In general, this method can be used if a so-called condition of separability of the 
characteristic exponents hot -j- il (I = 0, +I, 12, . . 4 corresponding to the generating eigen- 
values is satisfied. 

Consider a group of characteristic exponents that are close (in the sense of violation 
of the convergence condition). The group is constructed so that for each element there exists 
at least one close element in the group and that condition (3.4) is satisfied for any two 
characteristic exponents from different groups. We say that the separability condition is 
satisfied if the groups of close characteristic exponents constructed in this way are covered 
in the complex plane by non-intersecting open simply connected bounded sets. In this case, 
two characteristic exponents corresponding to the same generating eigenvalue and having dif- 
ferent imaginary parts cannot belong to the same group. The separability condition imposes a 
relatively weak upper limit on the norm B of the perturbing matrix B(t): this upper limit 
is always weaker than the inequality 4.56B< Urn, where m is the dimension of the matrix of 
the given problem. 

Suppose that the separability condition is satisfied. Only characteristic exponents of 
the same group may merge during the iteration process (4.1); the difficulty with small 
denominators is also localized within group. Partition the groups of close characteristic 
exponents into non-intersecting classes, such that the groups in each class can be obtained 
as a result of a translation by an integer number of units along the complex axis. The 
classes constructed in this way are characterized by disjoint sets of generating eigenvalues. 
Within each set, it is generally the multipliers exp(2nh,,J, and not the corresponding eigen- 
values, that are close. Among all groups in a special class,.designate one main group. This 
may be the group in which the maximum number of elements is equal to the eigenvalue &j. 

For each class, form a block in the matrix A, whose diagonal elements are the generating 
eigenvalues from the set corresponding to this class. If close eigenvalues exist, the blocks 
in general are triangular, and not diagonal. Then it is helpful to apply a kinematic 
similarity transformation to the matrix A, +B(t) in order to replace the generating eigen- 
values in the blocks by the characteristic exponents from the main groups. The transformation 
matrix is diagonal and its form is like (4.2). This ends the preliminary analysis and the 
preliminary transformations, and we can proceed with the iterations (4.1). 

Let us demonstrate the construction of the block-diagonal matrix AA,ck). To the isolated 
characteristic exponent , Qk-U not included in any of the groups there corresponds a unique 
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diagonal element of AAItk), equal to the diagonal element of the matrix Rjk-1) - the zeroth 

term in the Fourier series expansion of B(k-1) (t) l For each main group of characterisitics 
exponents, there is a diagonal block in AA,tk), which is equal to.the corresponding diagonal 
block of Rf-1). The matrix is thus constant and the kinematic similarity transformation 

suggested in (4.l)may be replaced by.R(k)-l~,(k)~(k) with the Constant transformation matrix Rck). 

The matrixh,@'is thusblock-diagonal,and we have to transform its separate blocks to canonical 
form, which in manypractical cases are quite small.This can be done,for instance, by the QR- 
algorithm with translation or, if the blocks are small, by perturbation theory. 

If the parametric excitation matrix S 0) is not small and the separability condition 
is not satisfied, then we consider the matrix A,+ ye(t) that depends on the parameter YE 
0 11. Applying the iterations (4.1) to this matrix with stepwise increments of y, we obtain 
the final result for y= 1. The parameter increment is chosen to be sufficiently small, so 
that the separability condition is satisfied. 

5. Exam@e. Consider an electromagnet moving with constant velocity vg along a 
guideway formed by dynamically uncoupled elastic homogeneous beams of mass m, and length 1 
each (Fig.1). The problem corresponds to the simplest model of a magnetically suspended 
vehicle /l, 2, 6/*. (*See also POGOREMV D.YU., Spectral Analysis of Weakly Perturbed Linear 
Dynamic Systems, Bryansk, 1988. Unpublished manuscript, VINITI 03.10.88, 7261-1388.) 

Fig.1 

The stability of the suspension is ensured by regulating the clearance s between the 
pole terminals of the electromagnetic and the beam. The control uses the readings of the 
clearance sensor S- so and the accelerometer 2" (SO is the nominal clearance). The 
clearance and the vertical coordinate z are xelated by the equation s = 2 + w (I, t) + g (s), 
where w is the beam deflection and E (x) is the function describing the unevenness of the 
guideway. 

Ignoring eddy currents and saturation, we obtain from the Lagrange-Maxwell equations the 
equations of the electromagnet 

mz” = llg (dLlds)i2 f Mg, Lj’ -I- (dL/ds)js’ = -rj + u 

u = iJo + a0 (s - so) + a,s’ + a,z”, L = L&s + L, 

Here j, uI r, L are the current, the output voltage, the ohmic resistance, and the inductance 
of the electromagnetic winding, M is the vehicle mass and &o, cr, and a, are the regulator 
parameters. The equations of the model. axe closed by the equation of bending vibrations of 
the beam. Assuming that the beam length is large compared with the characteristic dimension 
of the cross-section, we will use the equations of the technical theory of bending vibrations 
of rods. 

Let us linearize the equations relative to the stationary values of the variables so, so, 

Jo, UO and w0(4 and change to dimensionless variables and parameters. We also expand the 
dimensionless variation of the deflection Aw = (w - wo)/so in orthonormal eigenforms 'Pk (x') 
of the bending vibrations of the beam (ignoring the interaction with the magnet) 

Aw = j+ w,$k (x’)% 5’ 3 L 
kti 

1 

The equations of bending vibrations of the beam may be replaced by an infinite-dimensional 
system of second-order ordinary differential equations /7/. As a result, we obtain the 
following system of variational equations: 

AZ" = cAs - Aj (5.1) 
Aji' - (1 - d)As' + AjlT, = c,As + c,As' + c,Az" 

wk ‘* + t,,k%k = -p’pk (2’ (z))Az", k = 1, 2, . . . 
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AZ = b + E (2’ (7)) + p wk @) (Pk k’ @h 
kti 

The dimensionless time 7 = t/T, has been introduced. 
denotes differentation with respect to z and ok are the 
corresponding to the forms qk (2’). 

. _ 

In (5.1) and below, the dot 
eigenfreguencies of the beam 

At instants of time r = ~W(ZJ,T,) (n = 1, 2, . .), the variables wk have a discontinuity 
because the electromagnet reaches a stationary guideway beam: 

WI; (nT + 0) = 0, T = l/(u,T,), n = 1, 2, . . . (5.2) 

The guideway unevenness is modelled by a random function generated by a shaping filter: 

Here a and x are the 
If we consider only 

be written in the form 

Tc + a.$ = XV (T), (3.::) 

filter parameters and V(T) is white noise of unit intensity. 
a finite number of eigenforms of beam vibrations, Eqs.(5.1)-(5.3) may 

.z' = A (t).z + bV (z), A (T f T) = A (r) (5.4) 

z(nT+O)=Gz(nT-0), G= 

All 4, (7) 
A(7) = Azl(%) A,, 

4, 6) = aT (7) 
A2x(z) = azl (z) eTY e = (0, 0, 1,O)T 

x = (z, z’, L^‘., E, WI, w,‘, w2, wz’, . . .)T 

b = (0, 0, b&T, x/T, 0, . ., O)T 

0 1 0 0 

An 
0 0 1 0 

A,, = diag(Cj} 

= -b, -b, 

0 
- b, b,a/T + b, cj = 

0 0 - a/T 

a12 (4 = bcp, W W), hcp, (I’ W), b,cp, (5’ b)L 4% (I’ (4), . . .jT 
a21 (.c) = -p (0, ‘Fl b b)), 0, (F2 (5’ b)), . . .jT 

b, = co - c!T,, b, = e, + 1 - c - d, b, = cz _t l/T, 

As the unperturbed matrix, we consider the block-diagonal matrix A, = diag {A,,,A,,}. The 
generating eigenvalues and eigenvectors are determined by the blocks A11 and A,,. 

Let us carry out a covariance analysis of problem (5.4). Making the change of variables 
z = R(z)y, we rewrite Eq.(5.4) in the form 

y' = Ay + c (z)V, y (nT + 0) = Hy (nT - 0) 

e (z) = R-’ (r)b, H = R-’ (0)GR (0) 
(5.5) 

Eq.(5.5) has the matricant u(?)= exp (AT) and its general solution, allowing for dis- 

continuity of the variables wk, is given by /6/ 

y(nT+~)=u(r)K~y,+u(r){ f: K”ju(-t)c(t)V(t+(n-m)T)dt}+ 
In=1 0 

ju(r-t)c(t)V(t+nT)dt, K=Hu(T),~E[O,T) 

Let US now compute the covariance matrix P(T): 

f’ (nT + z) = u (z) {KnPoKln + i: K”D (T) K*m + D(T)> u* (2) 
m==1 



D(s)=Su(-t)c(t)C*(l,u*(-t)dt 
0 

(the asterisk denotes 
to the limit n-t 00: 

conjugation of matrices). The steady-state value is obtained by passing 

P, (UT f 2) = u (a) {jl PD (T) iTarn + D(T)} u* (z) (5.6) 

We will only consider the case when the matricant 11 (7) is diagonal. Then the integral 

Ll (z) is evaluated analytically. 
Consider the matrix Q = XI!?% (I')K*", whose elements are in general complex. We change 

to real matrices by the transformation 

Q’ = R (O)Q~* (0) = XP’D’ (T)iYT’” 

ICY I R (0) rift-l (0) = Gu’ (T) = 2; j j t;“” 
I 

D’ (Tf = R (0)D (T)R* (0) 

Here u'(r) is the matricant of the original system (5.4). Q' is computed by reducing X' to 
the diagonal form h' = S"R'S, such that the diagonal elements of A' are the multipliers 
of problem (5.4) (some of the multipliers are zero while others are assumed to be different). 
The matrix Q' takes the form 

Q' =S{riimS-"~(T)Sf-lA~}S* 

and the sum in braces is easily calculated. Q is determined from Q' and P*(T) is then 
obtained from (5.6). 

The steady-state value P,'(z)= (xxT) of the covariance matrix of the original problem 
is related to P (2) by the equality 

P,' (i) = R (z)P, (z)R* (T) 

The results of numerical calculations are presented in Figs.2-5. We used the following 
values of the parameters in these calculations (all are given in dimensionless form): d = 0.5; 
c = 0.7; a = 2; x = 1; o1 = 2,2; co = 0.7; E, = 2; c, = 1.5; c = 1; Ti = 7. The guideway was modelled 
by beams with hinged support at the ends. The matrix Fourier series were limited to 19 terms. 

Fig.2 Fig.3 

Fig.2 shows the steady-state variance Pan of the vertical coordinate AZ as a func- 
tion of time for the dimensionless period 
time. 

T= 10. The variance does not change much over 
The dependence of P,,(O) on the velocity 00 is shown in Fig.3. The following 

velocity range was assumed: v&$E EZ 10, i;O, 81. For smaller velocities, the effect of 
longitudinal motion is weak, and therefore a sufficiently good approximation is obtained by 
analysing the dynamics of a vehicle which is stationary in the longitudinal direction. 

The dependence of the characteristic exponents of system (5.4) on the velocity is shown 
in Fig.4. Of the complete series of exponents 
the maximum norm iI rJk 11 

hj -#-2m%0', we show only one exponent with 
of the corresponding vector. 

exponents may have positive real parts, 
At high velocities, the characteristic 

but this does not cause instability of the system. 
The vehicle periodically reaches another stationary element of the guideway and the system 
multipliers, whose dependence on the velocity is shown in Fig.5 (the dark circles), satisfy 
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the stability conditions; the light circles show for comparison the values of @W @fT) , 
where hi is the characteristic exponent. 

Fig.5 

Note that the curves of the characteristic exponents as a function of velacity fFig.4) 
axe not smooth. The point A corxesponds to the merging of characteristic exponents, which 
causes singularity of the matrix E+X@) during the iterations (3.3) and requires the use of 
the generalized algorithm (4.1). We analysed the effect of the number of eigenforms of beam 
vibrations included in (5.4) on the accuracy of the results. The solid curve in Fig.2 
corresponds to two forms and the broken curve to one form. As in Fig-d, the crosses correspond 
to twa eigenforms and the light circles to one form. Thus, allowance for one eigenform of 
beam vibrations produces qualitatively and quantitatively reliable estimates of the character- 
istics. For this reason, in particular, the use of Timoshenko's improved theory of bending 
vibrations of rods does not change the result for our thin beams appreciably. 

Note that the algorithm of Sects.3 and 4 has a number of advantages compare-cl to other 
numerical methods /a/. For instance, its convergence is faster. Compared with the method 
of monodromy matrices, it does not require numerical integration‘of a system of equations anil 
in addition it solves the reducibility problem. Hill's method of determinants involves 
large auxiliary matrices, which in turn increase the computing time. 
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THE CONSTRUCTION OF SUCCESSIVE APPROXIMATIONS OF THE PERTURBATION METHOD 

FOR SYSTEMS WITH RANDOM COEFFICIENTS* 

A.S. KOVALEVA 

Moscow 

(Received 27 June 1990) 

A successive approximation procedure is proposed for stochastic systems 
reducible to standard form with non-"white noise" perturbations. To a 
first approximation, the solution of the perturbed system converges to 
the solution of some averaged deterministic system, and to a second 
approximation it converges to the solution of some averaged diffusion 
equation. Higher approximations enable one to estimate the deviations 
from a diffusion process. The convergence interval depends on the 
properties of the deterministic solution of the first-approximation 
equation. 

1. We consider systems with equations of motion reducible to the standard form 

z' = EF (t, z) -I- ERG (t, z), z (0) = a E R, 
(1.1) 

Here a is a small parameter. For a fixed I, the functions F (t, .) and are 
stochastic processes with expectations MF (t, .)= f (t, .), MG (t, .) = g (t, .). 

G (& *) 

Henceforth, we assume that the functions f, g are periodic or conditionally periodic 
in t and the means 

(I-2) 

exist uniformly in zESCR,; the function c(z) is defined similarly. Other restrictions 
on the coefficients of system (1.1) are stated below. 

So far, two special cases of system (1.1) have been considered 11, 2/. 
a) F(z)+ 0. Then /l/ under appropriate restrictions the solution s&s)= z*((t,) of 

system (1.1) weakly converges /3/ as e+O to a deterministic process &~(v,)- the solution 
of the equation 

ax&T, = F (2& 4 (0) = a, t, = et 
(1.3) 

If the solution zo(Tr) of Eq.ll.3) is asymptotically stable, 
is ensured for G,<v,<= /4/. 

then the convergence x~+zO 
If stability is not required, ze+z,, for 0 <<z,< T,, where 
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